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1 INTRODUCTION 
1.1 OPEN WORLD GAMES 

Open world games have over the years become a de facto standard to showcase the 
development ability of game studios, both in fictional world creation as well as 
graphical benchmarks. Their complexity and large worlds frequently come with high 
hardware requirements pushing most modern PCs and consoles to their limits.  

 
FIGURE 1: GRAND THEFT AUTO V (LEFT) AND THE ELDER SCROLLS: SKYRIM 
(RIGHT) ARE PROMINENT EXAMPLES OF MODERN OPEN WORLD GAMES. 
(COURRÈGES, 2015) (BETHESDA SOFTWORKS LLC, N.D.) 

Although definitions vary, an open world game usually allows players to explore a large, 
interconnected game world without loading screens and artificial obstacles. They can 
freely decide to complete quests or simply move around and explore, interact with non-
player characters (NPCs) or amuse themselves with side activities. (Hughes, 2021) 

Well known developers of open world games include Bethesda Softworks (The Elder 
Scrolls and Fallout series), CD Projekt Red (The Witcher series and Cyberpunk 2077) 
and Rockstar Games (Grand Theft Auto and Red Dead Redemption series). 

 

1.2 OPEN WORLD GAMES ON HANDHELD CONSOLES 

Early open world games on handheld gaming devices like the Nintendo Game Boy were 
limited to simple 2D worlds. Game releases such as Grand Theft Auto for the enhanced 
Game Boy Color attempted to provide a world which could be accessed by the player 
from all directions without loading screens but suffered from middling reviews. (Gamer 
Network Limited, 2000)  

With rapidly increasing performance on later devices more ambitious open world 
games could be published. Hardware acceleration allowed gaming handhelds such as 
the PlayStation Portable to produce a variant of Grand Theft Auto III’s Liberty City in 
the game Grand Theft Auto: Liberty City Stories. This came at the cost of additional 
extensive optimizations to assets and code to keep performance and battery life within 
acceptable levels. (Castro, 2005) 
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FIGURE 2: GRAND THEFT AUTO 2 FOR THE GAME BOY COLOR IN 1999 (LEFT). 
GRAND THEFT AUTO: LIBERTY CITY STORIES RELEASED IN 2005 (RIGHT). (GAMER 
NETWORK LIMITED, 2000) (PHILLIPS, N.D.) 

Eventually, sufficient performance of gaming handhelds like the New Nintendo 3DS 
allowed previously large open world console titles such as Xenoblade Chronicles to be 
completely ported without compromises in gameplay. (Helgeson, 2015) 

The release of the Nintendo Switch pushed this concept further due to its combined 
handheld and home console design. Open world games such as The Witcher 3 and The 
Legend of Zelda: Breath of the Wild proved to be largely successful on the platform. 
(Awan, 2020) (Orland, 2017) 

 
FIGURE 3: THE WITCHER 3 (LEFT) AND THE LEGEND OF ZELDA: BREATH OF THE 
WILD (RIGHT). (CD PROJEKT S.A., N.D.) (HOOKSHOT MEDIA, N.D.) 

The popularity and sales of the Nintendo Switch has contributed to competitors 
releasing PC based handhelds to great demand. The most notable of these is the Steam 
Deck from Valve Corporation. (Heaton, 2022) 

 

1.3 MICROCONTROLLERS 

Microcontrollers (or Microcontroller Unit - MCUs) are primarily low-cost chips. They 
are usually designed with all necessary components such as a CPU, RAM, ROM and 
Input/Output integrated on a single die. This allows them to be used as single chip 
solutions when compared to typical microprocessors, which require several support 
chips to function. As RAM is mostly fully integrated no system buses are exposed 
further reducing pin count and packaging cost. Clock speed is significantly lower when 
to save power and to allow the use of older manufacturing nodes. (List, 2020) 
(Osborne, 1978) 
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FIGURE 4: A NUMBER OF DEVELOPMENT BOARDS USING MICROCONTROLLERS 
(LEFT). A MICROCONTROLLER BUILT INTO THE CORNER OF A MICROSD CARD 
(RIGHT). (GHARGE, 2022) (HUANG, 2013) 

Their simplicity and cheap price per unit often affords them usage in single-task or 
dedicated applications including: 

• Household appliances like washing machines, refrigerators and microwaves. 
• In computers as additional controllers for components like disk drives and 

peripherals (e.g., keyboards and mice). 
• In cars including engine control units (ECUs) and Anti-lock braking systems 

(ABS). 
• Electronic Toys such as RC-cars, robots and low-cost gaming handhelds. 
• Smart cards such as credit/debit, SIM and identity cards. 

(Brain, n.d.) (Gupta, 2021) 

 

1.4 MICROCONTROLLERS IN HANDHELD CONSOLES 

Microcontrollers were commonly used in previous decades to run low-cost handheld 
games. Numerous models have been manufactured by different companies (along with 
soviet clones) up to the modern day. (Branagan, 2022) 

One of the first gaming handhelds is the Microvision introduced in 1979. It utilized 
exchangeable cartridges with integrated 4-bit TMS1100 Microcontrollers produced by 
Texas Instruments. The TMS1100 chip itself is a RAM/ROM doubled variant of the first 
microcontroller ever released, the TMS1000 released in 1975. (Boris, n.d.) (List, 2020) 

Later releases such as the Nintendo Game & Watch series and Tamagotchi frequently 
made use of cheap 4-bit microcontrollers designed for watches such as the SM5 family 
of MCUs from Sharp. These chips contain internal LCD controllers suitable for driving 
the custom segments of the LCD Panels available at the time, with clock speeds as low 
as 32,768 Hz. (Sharp Corporation, 1990) (Rubio, n.d.) 
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FIGURE 5: MICROVISION RELEASED IN 1979 (LEFT). ORIGINAL RELEASE OF GAME 
& WATCH BALL IN 1980 (RIGHT). (VIDEO GAME KRAKEN, N.D.) (SHERRILL, 
2020) 

Over the decades, the introduction of 8-bit microcontrollers have allowed more 
advanced low-cost game handhelds to be implemented, including the well-known Brick 
Game clones. In turn, reduced costs have allowed formerly more costly 4-bit gaming 
units to be included as an example in cheap fast-food meals. (sonnyboy, 2017) (Inhibit, 
2021) 

Although more advanced handhelds such as the original Game Boy came in 1989 (itself 
inspired by the Microvision), it used a dedicated microprocessor and required 
additional RAM and supporting chips. The additional components and higher quality 
drove up the cost of the console to its original US$ 89.99 price. (Brian, 2016) 

The introduction of 32-bit capable microcontrollers in recent years has made releases 
of more premium handheld consoles possible. One such example is the Nintendo Game 
& Watch: The Legend of Zelda, which is itself a reimagining of prior Game & Watch 
titles. It uses emulation to provide older console titles to retro-enthusiasts. The 
Playdate is another example, with a built-in hand crank as a unique input method, 
showcasing newer form-factor innovations. Both handhelds are manufactured using 
available off the shelf microcontrollers. (Nintendo Co., Ltd., 2022) (Panic Inc., 2022) 

    
FIGURE 6: THE NINTENDO GAME & WATCH: LEGEND OF ZELDA (LEFT) AND THE 
PLAYDATE (RIGHT). (NINTENDO CO., LTD., 2022) (PANIC INC., 2022) 

Cheaper component costs have also contributed to further advancements in low-cost 
handhelds such as the frequent addition of color screens and more complex games 
commonly found in older 8-bit PCs and consoles. Several consoles use a NES-on-a-chip 
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(NOAC) along with copied or modified titles and homebrew games often produced for 
the original Nintendo Entertainment System. (Black, 2019) (Basinger, The Oregon Trail 
Electronic Handheld Game!, 2018) 

 

1.5 MOTIVATION 

While not comparable to a modern Desktop CPU when it comes to performance, 
microcontrollers have evolved regardless to provide increasing computational speed 
relative to their cost. The capability of these chips to be used for more than simple 2D 
game handhelds, including large open world 3D games, should be investigated. This 
would allow new gameplay experiences on inexpensive hardware, which is especially 
relevant for price sensitive markets. Many stores to this day still retail low-cost 
handheld gaming devices like the ones in Figure 7. 

 
FIGURE 7: BRICK GAME CLONE (LEFT), AND RETRO CONSOLE LIKELY BASED ON A 
NES-ON-A-CHIP (RIGHT) FOUND IN LOCAL STORES. 

The high cost (easily exceeding millions of US Dollars) of otherwise producing 
dedicated application specific integrated circuits (ASICs) for low-end 3D graphics is 
usually beyond the reach of most production budgets for these devices. (Lankshear, 
2019) 

 

1.6 AIM 

The goal of this thesis is therefore to create a functional open world 3D prototype on a 
microcontroller-based handheld. This will require extensive research in previous 
engine implementations and graphic techniques. 

The resulting engine itself should mimic modern open world 3D engines and: 

• be reasonably simple to understand and modify, as the combination of 
microcontroller and 3D graphics knowledge is not necessarily very common.  

• not have any loading times or screens when traversing the world to prevent 
breaking immersion by the player. 

• have tooling to allow simple import of meshes from Blender (3D application). 
• contain typical optimizations found in other rendering pipelines which can be 

quickly performance tested and applied. 
• run with an acceptable frame rate on common graphical workloads.  
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2 ANALYSIS OF SOFTWARE RENDERERS 
Before the advent of affordable hardware accelerated GPUs, early 3D games made use 
of the general-purpose CPU found in their respective platforms to render 3D graphics. 
This chapter focuses on existing engines and games which historically used a software 
rasterizer, some of which at the time already included open world gameplay. 

 

2.1 PC GAMES 

3D wireframe rendering became common on early 8-bit hardware with the release of 
games like Elite on the BBC Micro in the 1980s. A significant bottleneck in early 8-bit 
hardware was still the CPU, and therefore its ability to effectively fill the generated 
polygons. (Loguidice, 2009) 

One of the first dedicated 3d engines was the Freescape engine by Incentive Software, 
used in games such as Driller and Castle Master. It was one of the first engines to 
implement filled flat-shaded polygons. More powerful 16-bit computers allowed the 
engine to operate at a much more acceptable framerate. (Fahs, 2008) 

 
FIGURE 8: ELITE RELEASED IN 1984 (LEFT). DRILLER, BASED ON THE FREESCAPE 
ENGINE, IN 1987 (RIGHT). (LOGUIDICE, 2009) (VIDEOSPIELHALBWISSEN, N.D.) 

Later games like The Terminator from Bethesda and Hunter from Activision, both 
released in 1991, were among the first to combine typical open world gameplay 
elements with filled 3D polygons. 3D engines progressed from there with features 
including texture mapping introduced in games like Ultima Underworld in 1992. 
(McMullen, 2019) (Moss, 2017) (Maher, 2019)  

Games such as The Elder Scrolls II: Daggerfall released in 1996 extended these 
principals to one of the biggest open worlds in gaming measuring over 160,000 square 
kilometers in size. This was achieved with mainly procedurally generated and repeating 
content to fill the world. Polygon counts were still heavily limited in an open 
environment, leading to the use of 2D sprites for characters and objects to maintain 
performance. (Burgar, 2022) (Zao, 2012) 
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FIGURE 9: HUNTER RELEASED BY ACTIVISION IN 1991 (LEFT), ULTIMA 
UNDERWORLD (RIGHT) RELEASED IN 1992. (MOSS, 2017) (PAYNE, 2018) 

A significant milestone was the introduction of Quake in 1996. Created by id Software 
(known previously for Wolfenstein 3D and Doom) Quake utilized a true 3D engine 
including fully modelled enemy characters. Features such as pre-baked lightmaps and 
dynamic lighting were implemented and showcased then advanced techniques which 
would persist to the modern day. 

The main software rasterizer as described by Abrash (1997) utilizes a technique usually 
referred to as scanline rendering (or scanline conversion). This method consists of 
sorting triangles in the vertical order in which they appear. Each scanline can then be 
rendered by proceeding horizontally and rendering triangles as their edges start and 
end, while keeping overdraw to a minimum (i.e., only the frontmost triangle at a given 
pixel is rendered).  

When combined with binary space partitioning (previously used in Doom) and other 
optimizations, the performance of the engine became notably efficient on hardware at 
the time. However, implementing a working solution was error-prone and time-
consuming and did not work well with moving objects (Enemy models used different 
rasterizers).  

Quake also made extensive use of the features of the original Intel Pentium processor, 
such as the ability to have both floating-point and integer operations operating 
concurrently. (Abrash, Graphics Programming Black Book, 1997) 

 
FIGURE 10: THE ELDER SCROLLS II: DAGGERFALL (LEFT) AND QUAKE (RIGHT), 
BOTH RELEASED IN 1996. (ZAO, 2012) (SANGLARD, THE STORY OF THE RENDITION 
VÉRITÉ 1000, 2019) 

Quake along with several other notable titles at the time such as Tomb Raider also 
introduced support for one of the very first dedicated 3D GPUs for consumer PCs, the 
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Rendition Vérité 1000. (Linneman, DF Retro: Quake - The Game, The Technology, The 
Ports, The Legacy, 2021) 

The Vérité 1000 utilized a RISC based processor core with additional graphic 
instructions and hardware blocks, making the card act more like an additional CPU 
dedicated to graphic operations. Later GPUs such as the Voodoo Graphics by 3dfx 
instead focused on dedicated fixed functions units to achieve significantly faster output. 
(Sanglard, The story of the Rendition Vérité 1000, 2019) 

Rapid adoption of these and more advanced GPUs led to the eventual deprecation and 
complete removal of most software rendering implementations in 3D engines, as 
dedicated GPUs rapidly outpaced CPU rendering performance.  

Even though the use of software rendering has practically vanished for most gaming 
applications, software renderer fallbacks are still provided for modern APIs like 
DirectX (Windows Advanced Rasterization Platform) and Vulkan (LLVMpipe). 
(Microsoft, 2022) (The Mesa 3D Graphics Library, n.d.) 

Increasing programmability of shader cores in GPUs of the last decade has also 
progressed to the point where a software rasterizer itself can be implemented and 
programmed on these increasingly general compute units. (Laine & Karras, 2011) 

 

2.2 4TH GENERATION HOME CONSOLES 

4th generation game consoles mainly consisted of 16-bit machines which relied on 
graphical workarounds like Mode-7 effects to provide pseudo 3D environments.  

Two notable exceptions appeared using the same approach for producing 3D graphics. 
The first was Star Fox for the Super Nintendo Entertainment System (SNES), while the 
second was Virtua Racing for the Sega Mega Drive (known as the Sega Genesis in North 
America). Both games made use of a coprocessor on the game cartridge itself to 
produce the needed 3D graphics. In the case of Star Fox this was the Super FX chip. 
Virtua Racing made use of a custom Samsung DSP processor called the Sega Virtua 
Processor (SVP). (McCloud, n.d.)  (David, 2007) 

 
FIGURE 11: STAR FOX ON THE SNES (LEFT) AND VIRTUA RACING ON THE MEGA 
DRIVE/GENESIS (RIGHT). (HERNANDEZ, 2011) (LINNEMAN, DF RETRO: VIRTUA 
RACING SWITCH VS EVERY CONSOLE PORT VS MODEL 1 ARCADE!, 2019) 

Although both co-processors were 16-bit capable and clocked higher than their 
respective base consoles, neither chip contained true hardware acceleration for 3D 
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rendering. Custom programming along with rudimentary mathematical operations 
were used to perform vertex calculations and rasterization.  

Further games were developed for the SNES utilizing the Super FX chip in one form or 
another, while Virtua Racing remained the only game on the Mega Drive due to its high 
production cost as a result of the additional SVP. 

3D hardware acceleration became standard with 5th generation video game consoles 
such as the Sony PlayStation and Nintendo 64. (Copetti, Architecture of Consoles | A 
Practical Analysis, n.d.) 

 

2.3 NINTENDO GAME BOY ADVANCE 

One of the most commercially successful 2D handheld gaming consoles, the Game Boy 
Advance (GBA), arrived in 2001 and featured a 16.78MHz 32-bit Arm core along with a 
total of 384KB of RAM. (Copetti, Game Boy Advance Architecture | A Practical 
Analysis, 2021) 

While only designed to handle 2D graphics and some mode-7 effects like the SNES, 
certain developers were able to overcome these limitations and produce 3D games. For 
example, VD-dev (having already developed a suitable 3D engine for the platform with 
V-Rally 3) produced the open world game DRIV3R in 2005. (Stop Skeletons From 
Fighting, 2016) 

 
FIGURE 12: DRIV3R BY VD-DEV (LEFT) AND AN UNRELEASED PORT OF QUAKE 
(RIGHT). (VD-DEV, N.D.) (FOREST OF ILLUSION, 2022) 

While commercial development has long ceased for the console, homebrew developers 
still frequently use the console due to its well documented architecture. This has in the 
past led to developments such as an unreleased port of Quake and a port of Tomb 
Raider (OpenLara). Both games mostly utilized assembly programming as well as other 
optimizations like look-up tables for mathematical functions at the cost of available 
memory. (Giannakis, Tomb Raider on the Nintendo Game Boy Advance is incredible | 
MVG, 2022) 

The Game Boy Advance was succeeded by the Nintendo DS in 2004, which featured a 
form of scanline rendering (similar to Quake) but accelerated in hardware. (Copetti, 
Architecture of Consoles | A Practical Analysis, n.d.) 
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2.4 NOKIA N-GAGE 

Before the appearance of smartphones featuring hardware acceleration, games on 
mobile phones were usually strictly limited to 2D graphics. In an attempt to enter the 
handheld gaming market, Nokia produced the N-Gage. Although it featured a 104 MHz 
Arm core coupled with 16MB of RAM to allow significantly better-looking games, the 
N-Gage was a commercial failure. (Hardware-Aktuell, n.d.) 

Several games for the device were released with 3D graphics. Among them were ports 
of popular PS1 titles like Tomb Raider and Tony Hawk. The Elder Scrolls Travels: 
Shadowkey is an example of an open world title on the platform. However, 3D titles on 
the N-Gage gained a reputation for somewhat inconsistent performance, low 
framerates and short draw distances. (Palley, 2004) (Leeper, 2005) 

 
FIGURE 13: PORT OF PLAYSTATION TITLE TOMB RAIDER(LEFT), CALL OF DUTY 
(MIDDLE) AND BETHESDA’S OPEN WORLD THE ELDER SCROLLS TRAVELS: 
SHADOWKEY (RIGHT). (STELLA, N.D.) (PALLEY, 2004) (LEEPER, 2005) 

Similar processing power and system on a chip (SoC) architecture existed in the form of 
several Palm handhelds and Windows Mobile PDAs. However, their small market share 
meant larger development studios refrained from providing any notable 3D games. 
(Basinger, Tapwave Zodiac: The Failed 2003 Gaming PDA, 2018) 

The later introduction of smartphones such as the iPhone came with 3D hardware 
acceleration as standard to help offload graphical tasks from the main CPU. (Patterson, 
2008) 
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3 ANALYSIS OF ASSET LOADING SYSTEMS 
An important aspect of open world games is the ability to seamlessly load in parts of the 
world as the player changes position in the game world.  
 

3.1 LEVEL-BASED ASSET LOADING 

Early 3D games loaded environment meshes and other data for a single game level 
completely into RAM. The CPU was often incapable of processing other loading tasks 
when already busy with rendering and handling game logic.  

The systems on which these games ran on were also heavily affected by sorting of 
visible triangles before the common use of Z-buffers. Simpler indoor scenes could solve 
the problem of visible surface determination (VSD) using binary spaces partitioning 
(BSPs) to store levels. This allowed significantly faster and more efficient rendering by 
providing a correct triangle order, while significantly reducing overdraw when given a 
player position. (Target, 2019) 

Polygonal presorting could also be used in linear games where the player was ever only 
going in one of two directions. Triangle order could be precalculated on more powerful 
hardware at a slower rate and quickly retrieved later in the game in the correct order. 
Crash Bandicoot itself made use of this technique along with a paging system to load in 
batches of triangles dynamically. This allowed significantly larger and much more 
detailed levels than in any other PlayStation games at the time. (Gavin, 2011) (Ars 
Technica, 2020) 

 
FIGURE 14: DOOM RELEASED IN 1993 (LEFT). CRASH BANDICOOT  IN 1996 
(RIGHT). (FUNKE DIGITAL GMBH, N.D.) (KÜPPER, 2020) 

The simplest and most reliable method of solving triangle sorting issues as polygon 
counts increased was the later use of Z-Buffers. However, this still limited most levels 
to available RAM on the system along with the additional memory required for the Z-
Buffer itself. 

One approach to circumvent loading screens in such instances is the use of airlocks 
(also called door and portal technique). This consists of tunneling players through 
loading areas which in turn trigger loading of the next level. Level designers must 
ensure players are within a region shared by both larger areas in memory before the old 
level can be unloaded upon the player leaving it completely. (Ruskin, 2015) 
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FIGURE 15: LOADING USING INTERMEDIATE LEVELS OR CORRIDORS (LEFT). 
LOADING ZONES IN FIREWATCH (RIGHT). (RUSKIN, 2015) (NG, 2016) 

While this approach can be used to the extent of a pseudo-open world experience with 
larger sections for the players to explore, it is unsuitable for a true open world game 
where a player is not restricted to chokepoints and may enter a new area from any 
direction. (Ruskin, 2015) 

 

3.2 OPEN WORLD ASSET STREAMING 

A common setup for the loading of assets in open world games is to split up the game 
world into a two-dimensional grid consisting of chunks (also commonly referred to as 
tiles, sections, sectors, patches or cells) containing landscape and scene geometry.  
Chunks do not necessarily have to be square in size, if they are capable of being 
repeated in a pattern such as with triangles and hexagons.  
 
Only the chunks closest to the player are loaded in, thereby alleviating the issue of 
loading the complete game world into memory. This is especially important on mobile 
devices and RAM limited consoles. (Epic Games, Inc., n.d.) (Bilas, 2003) (Ender, 2017) 
 

 
FIGURE 16: PATCHES IN TRUCKSIMULATION 16 (LEFT). MISSING CHUNKS DUE TO 
LOADING ERROR IN MINECRAFT (RIGHT). (ENDER, 2017) (MINECRAFT WIKI, N.D.) 

Games such as Horizon: Zero Dawn utilize 2D maps streamed in a similar way to 
generate procedural landscapes and vegetation. This allows rapid editing of scenery by 
artists and automated tools. (Muijden, 2019) 
 
Depending on hardware, there are limitations in how quickly a game world can be 
streamed in. Games like the Legend of Zelda: The Wind Waker on the GameCube 
restricted the speed of the player to ensure assets could be loaded in on time. This was 
resolved with a later HD remake on the Wii U, which could load the entire ocean into 
memory at once. (Nintendo of America, 2013) 
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FIGURE 17: HORIZON ZERO DAWN (LEFT) AND THE LEGEND OF ZELDA: THE WIND 
WAKER HD (RIGHT). (SONY INTERACTIVE ENTERTAINMENT EUROPE LIMITED, 
N.D.) (HOOKSHOT MEDIA, N.D.) 

Certain games like Cyberpunk 2077 go a step further, enabling vertical streaming of 
assets due to increased complexity of geometry caused by high-rise buildings and 
stacked levels. (Cryer, 2019) 
 

3.3 LEVEL OF DETAIL 

The use of a chunk loading system is frequently combined with the reduction in 
complexity of meshes at a distance. Chunks which are further away from the player may 
use lower detail meshes, thereby reducing graphical workload and improving 
performance. Lowering details in models can either be performed manually or using 
automated tools. (Ruskin, 2015) 

 

 
FIGURE 18: MESHES ARE STORED IN LOWER DETAIL AND LOADED IN CHUNKS 
FURTHER FROM THE PLAYER (LEFT). LOWER LOD LEVELS CAN BE ACHIEVED 
THROUGH AUTOMATED MEANS TO SAVE ON ARTIST TIME (RIGHT). (RUSKIN, 2015) 

Far objects may also be dropped in favor of impostors or fake point lights to give the 
impression of activity in distant areas. (Persson, Creating vast game worlds, 2012) 

More advanced techniques may also be used to merge low level of detail meshes into 
larger chunks. This is combined with the application of more advanced data structures 
such as quadtrees when loading fresh assets into memory. (Meta, n.d.) 

 

3.4 NUMERIC PRECISION AT LARGE DISTANCES 

As the player moves further away from a world’s central origin, graphical glitching is 
likely to occur due to floating-point number precision reducing with higher values. If 
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integers are used, overflow and precision errors may also result in graphical artifacts 
and errors. (Bilas, 2003)  

A solution is the use of additional offsets to move player and models back to the origin 
whenever a player exceeds a certain distance. This ensures only the lower range of a 
floating-point type is utilized reducing graphical artifacts. (O'Neil, 2002) 

Another solution is to fix the player position at world origin and move objects around 
them according to their movements. This comes with additional drawbacks in 
development complexity. (Wooden, 2015) 

The use of double-precision floating-point numbers for distant objects is also possible. 
However, this is generally avoided for actual graphical tasks as most GPU hardware 
lacks full speed support for 64-bit datatypes. (Battaglia, 2020) (Persson, Low-level 
Shader Optimization for Next-Gen and DX11, 2014) 

Precision issues also heavily affect Z-Buffers, with very distant objects in the world 
often encountering Z-fighting and early culling. (Persson, Creating vast game worlds, 
2012)  
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4 DEVELOPMENT HARDWARE 
4.1 PICOSYSTEM 

A small gaming device called the PicoSystem (manufactured by Pimoroni) is used for 
development of the engine and prototype. Unlike other commercial handheld game 
consoles where software is not meant to be modified, the PicoSystem is designed for 
custom software development by the end user.  

 
FIGURE 19: THE PICOSYSTEM (LEFT), WITH MAINBOARD SHOWING INTERNALS 
(RIGHT). (PIMORONI LTD., N.D.) (POUNDER, 2021) 

Among its core specifications are: 

• RP2040 microcontroller with 264KB of RAM (overclocked to 250 MHz from a 
native 125 MHz) 

• 16MB of QSPI Flash 
• 240x240 pixel display (with support for pixel doubling to produce 120x120 pixel 

output) 

The PicoSystem is among the recent influx of dedicated hobby-development handhelds 
like the Arduboy, Gamebuino and PyGamer. (Kenney, 2019) 

 

4.2 RP2040 MICROCONTROLLER 

The PicoSystem uses an RP2040 microcontroller. This chip was released in 2019 along 
with a reference development and prototyping board, the Raspberry Pi Pico.  
The RP2040 contains among other components: 

• two Cortex M0+ CPU cores (labeled core 0 and core 1 respectively) 
• 256 kB of main RAM (separated into 4 banks of 64kB each). 
• two small RAM allocations of 4kB, designed for use as stack space by each 

individual core. 
• several common input/output methods including GPIO ports, UART, SPI and 

I2C. Used in the PicoSystem to drive components like the display, buttons etc. 
• An eXecute-In-Place(XIP) cache for caching previously accessed data from 

flash. 
 

Although many microcontrollers integrate flash or other ROM into the chip directly, 
the RP2040 was created as a “flashless microcontroller”, requiring an external chip to 
hold program code and data. This was done to increase the available SRAM in the 
design, lower cost and give some flexibility in utilizing different flash memory sizes (up 
to a maximum of 16MB). (Adams, Fraser, & Wren, 2021) 
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FIGURE 20: THE RASPBERRY PI PICO (LEFT) AND FLOORPLAN OF THE RP2040 
(RIGHT). (RASPBERRY PI LTD, N.D.) 

The two primary Cortex M0+ cores as used in the RP2040 belong to the smallest 
available core designs in Arm’s Cortex M-Series of embedded 32-bit cores. They retain 
a 32-bit address space and register size while utilizing more compact 16-bit Armv6-M 
Thumb instructions. This allows twice as many instructions to fit into memory when 
compared to other Arm instruction sets. As with other modern microcontrollers and 
those in the M-series, a discerning feature of the cores is the lack of a memory 
management unit (MMU). This prevents operating systems and applications which rely 
on virtual memory from executing without the use of emulation. (Shimpi, 2014) 
 
Unlike larger cores in the M-series, M0+ does not feature acceleration of floating-point 
instructions. The cores also do not come with an official integer divider. However, an 
additional hardware block has been added by Raspberry Pi Ltd to compensate for this, 
allowing divisions to be performed with an 8-cycle latency. The hardware block also 
provides dedicated FIFO queues to allow intercommunication between both cores. 
Both cores in the RP2040 are fitted with a single cycle integer multiplication unit (an 
optional feature for M0+ cores). (Raspberry Pi Ltd, 2022) 
 
 

 
FIGURE 21: COMPONENTS OF THE RP2040. (RASPBERRY PI LTD, 2022) 
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The four main banks of RAM (256KB total) are configured by default together in a 
striped fashion. Every 128-bits of linearly accessed data is thereby split into four 
consecutive 32-bit reads handled by each RAM bank. As only a single core can access 
one bank of RAM concurrently, accessing any memory location in main RAM with both 
cores thereby comes with a 25% chance of a collision. This will cause stalling for one of 
the cores and reduced performance. 
 
A unique feature of the RP2040 is the availability of small state machines called 
Programmable Input-Output (PIO). These state machines can execute 32 instructions 
and are designed to quickly process data on the I/O pins. One PIO is used by the 
PicoSystem to copy framebuffer data to the display and provide native pixel doubling 
capabilities, thereby alleviating the primary cores of this task. (Raspberry Pi Ltd, 2022) 
 

 

4.3 COMPARISON OF THE RP2040 TO OTHER SYSTEMS 

The years of CPU-only 3D rasterization spanned roughly the mid 80s to mid 90s, while 
mobile hardware utilized CPU rasterization between the early 2000s and mid 2000s 
before the transition on both platforms to hardware accelerated 3D processing. 

When compared to the previous architectures in Chapter 2, the RP2040 more closely 
has the performance profile of a desktop CPU from the mid-90s due to its high clock 
speed and dual processor cores. Robust overclocking capabilities used by the 
PicoSystem allows stable operation at twice the native clock speed. 

 
FIGURE 22: CPU PERFORMANCE COMPARISON USING COREMARK. DATA 
REFERENCED FROM (ZHANG, N.D.). 

While the processing capability of the RP2040 is comparatively high, available RAM is 
one order of magnitude lower and more comparable to the Game Boy Advance, 4th gen 
consoles or older 16-bit computers. 5th generation consoles like the PlayStation and 
Nintendo 64 along with desktop PCs released at roughly the same time contain 
substantially more RAM.  
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FIGURE 23: AVAILABLE RAM ON COMPARABLE AND MORE POWERFUL SYSTEMS. 
(COPETTI, ARCHITECTURE OF CONSOLES | A PRACTICAL ANALYSIS, N.D.) 

The limited amount of RAM is compensated somewhat with flash memory directly 
being mapped into the RP2040’s address space. This allows program instructions and 
read only data to reside on flash and be loaded only when directly needed through 
execute in place. The XIP cache (16kB in size) masks some of the much longer access 
times to flash if a successful cache hit takes place. (Raspberry Pi Ltd, 2022) 
 
Flash bandwidth is still a bottleneck necessitating placement of frequently used data in 
RAM to prevent excess stalling of the cores. Infrequently used or large data sets can be 
kept in flash with the use of the const keyword for read-only variables. (Sanderson, 
Making It Run Fast And Fit in RAM, n.d.) 

 

4.4 DEVELOPMENT ENVIRONMENT 

Development on the PicoSystem can be done using either: 

1. A native C/C++ cross-compiler 
2. MicroPython 
3. CircuitPython (itself a simplified variant of MicroPython) 
4. A 32-blit SDK offering compatibility with other platforms 

(Pimoroni Ltd., n.d.) 

The use of the native C/C++ compiler was decided early on to maximize performance 
and allow optimizations toward the target hardware. Compiled C/C++ programs in the 
form of .uf2 binary files can be drag and dropped into the device when connected to a 
PC via USB.  

Development Software is provided by the PicoSystem SDK which builds on the 
Raspberry Pi Pico SDK for the RP2040 microcontroller. The SDK provides an API with 
basic graphical functions and a base framework for game development including 
example tile maps and font.  
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FIGURE 24: BASE FUNCTIONS PROVIDED BY THE PICOSYSTEM SDK FOR 
DEVELOPMENT. (WILLIAMSON, 2021) 

Three main functions are given to assist the developer in getting started: 

1. init() for initialization of game code. 
2. update() designed for logic code while the framebuffer is copied to the display. 
3. draw() for safe modification of the framebuffer itself.  

The screen is refreshed at a rate of 40 FPS giving a frame time of 25000 microseconds 
in which the microcontroller can process all input, logic and display output. This is 
evenly split between the update() and draw() functions. 

CMake is used to in compiling the final binary and Microsoft Visual Studio Code is used 
as an IDE for development along with Git for version control. 
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5 DESIGN 
The engine and game prototype itself contain several core systems which need to be 
implemented. These can be split up into three main components: 

• A complete software-based rendering pipeline. 
• An asset loading system to stream in scenery meshes along with custom 3D 

models to showcase the ability of the engine. 
• A game prototype containing several functional elements from an open world 

game. 

 

5.1 RENDERING PIPELINE 

As there is neither an existing GPU nor any 3D API available for the 
RP2040/PicoSystem, a complete rendering pipeline including software rasterizer must 
be implemented. This pipeline is heavily tied to the dual-core nature of the RP2040 in 
order to fully utilize the microcontrollers’ full performance. 

An initial design plan is to move all rendering tasks onto core 1. Core 1 would thereby 
act as more of a dedicated GPU and run independently of core 0 to create a full frame 
before passing the frame back to core 0 for any further processing. 

Similar to the concept of display lists found in older 3D consoles and command buffers 
in modern APIs such as Vulkan and DirectX 12, core 1 would be fed with a list of 
triangles. These “triangle lists” will only handle triangles and leave final UI and post-
effects rendering to core 0, which is able to make use of the PicoSystem API and its 
drawing functions to provide a GUI and other post-processing effects. This also reduces 
rendering load on core 1 and allows the rendering pipeline to be kept compact for 
future optimizations, as it is likely to be the primary bottleneck of the engine. 

 
FIGURE 25: SPLIT OF TASKS BETWEEN CORES 

Although the RP2040’s cores contain optimized floating-point operations in ROM, the 
lack of a dedicated floating-point unit is likely to result in insufficient performance. The 
use of fixed-point integer calculations is therefore most likely necessary. 

A Blender add-on capable of exporting meshes needs to be created to allow the testing 
of more complicated models. 
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5.2 CHUNK SYSTEM 

As with most other open world games, a form of asset streaming is necessary due to the 
scenery meshes not being able to fit in the limited amount of RAM of the RP2040.  

Additionally, a chunk cache may be implemented, as constantly loading meshes from 
flash memory is likely to hamper performance due to limited bandwidth and invalidate 
existing entries in the XIP cache causing further performance degradation. 

This includes the extension of the Blender add-on to automate export of chunks. 

A prototype world should be modeled which includes environments inspired by existing 
open world games such as: 

• Cyberpunk 2077 – known for the large scale of environments including high-
rise buildings 

• Yakuza Series of games – known for the relatively small but highly dense city 
district of Kamurocho. 

• The Legend of Zelda: Breath of the Wild - known for large natural environments 
filled with foliage. 

The different environments are chosen to showcase the engine’s ability to handle 
different geometry and density scales. 

 
FIGURE 26: ENVIRONMENTS OF CYBERPUNK 2077 RELEASED IN 2020 (LEFT) AND 
YAKUZA 0 RELEASED IN 2015 (RIGHT). (CD PROJEKT S.A., 2022) (SEGA 
HOLDINGS CO., LTD., N.D.) 

 

5.3 OPEN WORLD PROTOTYPE 

A prototype open world game is created along with common open world components to 
demonstrate the capabilities of the engine. Along with scenery provided by the chunk 
system, the prototype world should have: 

• Blocking physics to prevent the player from entering all areas of the game world 
• At least one type of foliage 
• NPCs and one form of enemy 
• A simple form of gameplay, consisting of defeating enemies 
• A day and night cycle 

Each component is grouped together and executed procedurally, with each component 
deciding on how to add its own triangles to the triangle list. A budgeting system is to be 
implemented to limit the maximum triangles which can be added by any single 
component. As an example, only a limited number of NPCs can be displayed on screen 
at a time, with the remaining triangle budget being reserved for the chunk system to 
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add its own triangles. This is to prevent graphical artifacts from occurring when the 
chunk system is unable to load sufficient triangles to display the scenery correctly. 

 

5.4 DEVELOPMENT ESTIMATE 

Each core task consisting of implementing the rendering pipeline, chunk system and 
the completion of the prototype is given a rough estimate of 1.5 months to complete.  

Due to the research-heavy nature and high overlap of the three implementation phases, 
this estimate contains sufficient margins to ensure enough time is available for testing, 
bug-fixing and documentation of results. 

 

5.5 PROGRAMMING METHOD 

Programming focuses on using a data-oriented design. This is done due to the tight 
RAM constrains of the development hardware, often requiring careful data alignment 
to 4-byte boundary. (Acton, 2014) 

The engine should only use fixed memory allocations to allow for more predictable and 
consistent performance and memory use, as dynamic allocation can lead to memory 
fragmentation or allocation failure. Also, excess calling of functions can be detrimental 
to performance due to the required overhead and should be avoided. (Gregory, 2014) 

Data structures are kept consistent, with in-game objects stored in arrays of structs 
modified and read out by functions dedicated to single tasks looping over these arrays.  

An example of this is the NPC code. Code is split into a logic function, dedicated to 
keeping operations like movement and NPC decision making, and a dedicated 
rendering function, designed to produce triangles from existing mesh arrays and 
inserting them into the triangle list for rasterization. This is somewhat comparable to 
the update() and draw() routines of the PicoSystem SDK. Both functions loop over an 
array of structs containing NPC information such as position, their current state etc. 

 
FIGURE 27: AN ARRAY OF STRUCTS HOUSING NPC INFORMATION IS MODIFIED BY 
SEPARATE LOGIC() AND RENDER() FUNCTIONS. 

Struct Struct Struct Struct 

logic_npcs() { 

  move npc; 

  change state; 

} 

struct npc { 

  int position[]; 

  int status; 

} 

render_npcs() { 

  interpolate vertices; 

  add_to_triangle_list(); 

} 

Array of NPC structs: 
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Decoupling logic operations and rendering functions allows for logic to be 
independently updated from rendering, ensuring constant updates on tasks that are 
also more time critical and less likely to be dropped. For example, an NPC may no 
longer be visible to the player long before it stops being simulated in the game world. 
(Llopis, 2009) 

An approach to data-oriented design is commonly found in existing engines such as 
Unity under terms like entity component system (ECS). (Unity Technologies, 2019) 
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6 RENDERING PIPELINE IMPLEMENTATION 
6.1 DUAL CORE UTILIZATION 

The PicoSystem SDK only utilizes the first core by default. Enabling the use of the 
second core is done by adding the pico_multicore flag to the CMake project. 

As two cores accessing the same data on the microcontroller is likely to cause 
corruption or stale information, two data sets are created to allow both cores to work on 
their own data set without contention. Each data set consists of a framebuffer 
(effectively creating a double buffered setup) and a triangle list containing all triangles 
to be rendered.  

Synchronization of both cores is achieved by using the integrated FIFO queues each 
core contains to communicate with the other core. This synchronization is performed at 
the start of the draw() function on core 0 when framebuffers can be safely swapped 
without corrupting display output. 

Core 0 handles all tasks related to game input and logic as well as preparation of the 
view/projection matrix and filling of the triangle list for later rendering on core 1.  

 
FIGURE 28: OVERVIEW OF PIO, CORE 0 AND CORE 1 TASKS AND 
SYNCHRONIZATIONS DURING A SINGLE FRAME. 

If core 1 is unable to complete rasterizing a frame in time, the previous framebuffer and 
triangle list are retained and the draw() function on core 0 resumes after a short 
timeout. This ensures game logic can progress at a steady pace regardless of graphics 
slowdowns caused by high rendering workloads. 

Core 1 in turn handles all rasterization tasks utilizing the triangle list created by core 0 
and producing output in the assigned framebuffer. Once complete, core 1 waits for core 
0 to finish copying its framebuffer to the display (start of draw() function) and returns 
the microseconds needed for completing the frame (to assist in performance profiling) 
before beginning again. 
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6.2 TRANSFORM PIPELINE 

Triangles that are to be rendered can be passed to a dedicated render_triangle() 
function once they are in world space, which eases development by decoupling and 
encapsulating rendering functionality. 

The render_triangle() function handles all the steps needed in a minimal fixed vertex 
transform pipeline. Its purpose is comparable to early dedicated fixed-function systems 
like the Silicon Graphics Geometry Engine. (Fuchs, 1987) 

The render_triangle() function’s responsibilities include: 

• World to view/projection vertex transform. 
• Near-plane clipping to prevent inversion of triangles beyond the camera. 

Produces an additional triangle if needed. (Kenwright, n.d.) (Gambetta, n.d.) 
• Complete culling of triangles beyond the view frustum in Z direction.  
• Back face culling. 
• Per-vertex lighting based on distance to light source. 
• Copying the resulting triangle into the currently assigned core 0 triangle list. 

(Foley, Dam, Feiner, & Hughes, 1996) 

Clipping of triangles on the sides of the view frustum is skipped to save performance, as 
most triangles fall within the values of the 16-bit guard-band on the sides of the 
viewport. (Giesen, 2011) 

The function returns without adding a triangle to the triangle list if a triangle is either 
not visible in the scene or the triangle list itself is already full, thereby preventing any 
overflows. 

As with other open world games, the view matrix is configured for a first-person 
perspective and player inputs modify the matrix directly. (Oosten, 2011) 

 

6.3 FIXED-POINT ARITHMETIC 

The RP2040 does not contain any form of dedicated hardware to perform calculations 
using floating point numbers. This is somewhat remedied through optimized floating-
point functions burned into the ROM of the RP2040. 

Initial attempts to use floating-point numbers for all calculations ended up with poor 
performance. This was subsequently resolved by adopting a fixed-point integer 
representation, allowing a boost in performance by more than 700%.  

To prevent overflows especially when using multiplications, a fractional component of 
10-bits was decided upon for the whole engine. This gives a rough distance granularity 
of one millimeter (or 1024 steps) for every full integer component representing one 
meter in the game world. (Bikker, 2003) 

The fractional component is also ensured to be a power of two, allowing the compiler to 
apply bit-shifts instead of using the slower hardware divider. 
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FIGURE 29: FLOATING-POINT VS FIXED-POINT PERFORMANCE. LOWER IS BETTER. 

While most mathematical operations in the engine are performed using fixed-point 
arithmetic, certain variables are kept in floating point and converted when needed. This 
includes the camera position to ease developer modifications. 

Another advantage of the use of 10-bit fixed point integer arithmetic is the ability to 
keep vertex points in a 16-bit integer format if their position does not exceed the 6-bit 
integer component. Objects can therefore have a size of around 64 meters in each 
direction before needing a larger integer type, thereby allowing meshes to consume less 
memory by around 36%. This also alleviates flash storage consumption and needed 
bandwidth from flash along with reducing XIP cache pressure.  
 
Objects can then be transformed into world space when needed before the view-
projection transform is applied. After culling and transform, triangles are likely to be in 
a view space which can be represented by 16-bit values, allowing the triangle lists to use 
16-bit vertex positions as well.  
 

 
FIGURE 30: MESHES CAN BE KEPT USING 16-BIT INTEGER VERTICES IN STORAGE 
AND WHEN PASSING TO CORE 1 FOR RASTERIZATION TO SAVE MEMORY. 
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6.4 RASTERIZER 

Triangles passed to core 1 need to have sufficient information to allow rasterization to 
proceed independently of core 0. Each triangle therefore consists of a struct with which 
all necessary information is passed on, consisting of: 

• vertex position of the three vertex points. 
• corresponding vertex parameters. This is either color or, if a texture is used, UV 

coordinates. 
• a shader ID, to select which shader is executed when a pixel is visible. 
• a texture ID, to select which texture is used in a shader, if needed. 

As core 1 runs independently of core 0, the timing requirement for a frame change to 
25000 microseconds, assuming realistic graphical workloads. 

 

Unlike the scanline converters used in early 3D games such as Quake, the engine 
prototype rasterizer utilizes edge functions for finding pixels in a triangle. Individual 
edge functions define a value for a given pixel on a plane (or in this case the 
framebuffer) as either positive, zero or negative. Any values equal or above zero 
determines the half of the plane where a triangle resides. The combination of all three 
edge functions/sides of a triangle gives the definitive answer as to whether a pixel is 
within the triangle boundaries. (Pineda, 1988) (Fuchs, 1987) 

 
FIGURE 31: EVALUATING THE EDGES OF A TRIANGLE IS SUFFICIENT TO DETERMINE 
IF A PIXEL IS IN IT. (PINEDA, 1988) 

The decision to use edge functions for a rasterizer mainly resulted from: 

• Significantly faster implementation time. 
• Lower memory consumption as buffers for sorting edges are not needed. 
• No sorting of input triangles. 
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• Potential to allow multiple cores to process different parts of the screen without 
interference (e.g., using both cores of the RP2040 if needed to improve 
performance). 

• Barycentric coordinates are simple to implement, allowing interpolation of 
vertex parameters such as color blending and UV coordinates. 

(Scratchapixel, n.d.) (Abrash, Sponsored Feature: Rasterization on Larrabee -- 
Adaptive Rasterization, 2009)  

Modern GPU architectures may utilize a combination of edge functions on a coarse 
level to bin groups of triangles into tiles, which in turn perform fine rasterization. This 
is mainly due to their easily parallelizable nature and ability to be extended for subpixel 
precision. As there are no dependencies on other pixels in a scene, tile-based renderers 
are possible instead of requiring rasterization to be performed in a scanline fashion. 
(Kramer, 2020) (Abrash, Sponsored Feature: Rasterization on Larrabee -- Adaptive 
Rasterization, 2009) 

An overview of the rasterization process when looping through each triangle in the 
dedicated render_rasterize() function is therefore: 

1. The extremes of the vertex points of a triangle are calculated and a bounding 
box created. 

2. If needed, texture information in the form of UV coordinates are preloaded. 
3. Area of triangle and inverse Z values are calculated for barycentric coordinates 
4. Triangle is then filled by looping over vertical lines and horizontally over 

individual pixels. 
5. Each pixel is checked whether it is in a triangle using edge functions. 
6. If a pixel is in a triangle, check whether a value closer to the camera has already 

been written in the Z-Buffer. 
7. If not, select a shader which can fill the pixel using the given shader ID of the 

triangle. 

A Z-buffer is implemented to allow rasterization without the need to sort polygons in 
painters or reverse-painters order. This solution significantly reduces graphical 
artifacts from intersecting triangles as well as copies the most common approach used 
in modern 3D graphics. 

The low 10bit Z-buffer does come with a relatively low resolution, causing occasional Z-
fighting especially at a distance due to the reciprocal nature of stored values. This also 
prevents the final projection matrix from containing a near-plane too close to the 
camera or a far plane too distant. (Baker, n.d.) (Reed, 2015) 

 
FIGURE 32: GAME OUTPUT(LEFT), Z-BUFFER OUTPUT(MIDDLE) AND WIREFRAME 
OUTPUT ON THE RIGHT. 
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Z-buffer output along with several other debug shaders are provided to help with 
debugging graphical output.  

 

6.5 OPTIMIZATIONS 

Several minor optimizations to the pipeline were integrated to improve performance. 
This was done as the rasterizer was the primary bottleneck of the application.  

Among the optimizations were: 

• Culling of triangles beyond viewport using Cohen-Sutherland algorithm. (Foley, 
Dam, Feiner, & Hughes, 1996) 

• Back-face culling (triangles in counterclockwise direction) 
• Early return when single edge function fails 
• Early return upon encountering first pixel which is no longer shown on a 

horizontal line 
• Increased core 1 priority to the RP2040 bus, eliminating the chance of 

contention when accessing a RAM bank at the cost of stalling other bus masters 
like core 0 trying to access the same bank. 

 
FIGURE 33: OPTIMIZATION EFFECT ON CORE FRAME TIMINGS (ROUNDED TO 
NEAREST 100 MICROSECONDS) 

When combined, the performance profile of both CPU cores changes. This is due to 
additional workloads on core 0 for performing culling operations and facing higher 
contention when accessing RAM as core 1 is given higher priority. The benefits to core 1 
are significant enough however to outweigh the cost, as rasterization in the default 
starting scene can be completed within the allocated time frame of 25000 
microseconds for a single frame. Another benefit of performing culling operations on 
core 0 is the ability to ensure only visible triangles are added to the triangle list, thereby 
reducing required memory for both lists. 

The RP2040 can execute code from RAM instead of the flash and the related XIP cache. 
This is usually faster when factoring in cache misses and contention if code is stored in 
a ram bank only accessed by a single core.  

Attempts to utilize the speed improvement by moving the complete rasterization 
function to the scratchpad/stack RAM of core 1 resulted in slower performance. By 
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receiving help from one of the engineers at Raspberry Pi, Graham Sanderson, the 
problem was found to be the use of function veneers which translate function calls 
between RAM and flash. As the rasterizer extensively utilized divisions, which 
themselves are transparently turned into function calls during compilation to utilize the 
separate hardware divider, a noticeable performance hit was incurred. This was solved 
by moving division functions into RAM using a PICO_DIVIDER_IN_RAM=1 target 
compile definition. (Sanderson, Functions from RAM run slower than from XIP cache, 
2022) 

Moving the rasterizer instructions to scratch_x RAM (i.e., core 1 dedicated bank) 
resulted in an additional 3% performance improvement on core 1. Additionally, core 0 
no longer needs to share the XIP cache with instruction fetches intended for core 1, 
reducing cache pressure and contention. This itself improves performance by 30% on 
core 0. 

 
FIGURE 34: COMPILER PRODUCED ARM ASSEMBLY CODE SHOWING DIVISION 
FUNCTION CALLS WRAPPED IN VENEERS. 

Other attempts to improve performance such as using a more advanced rasterizer 
failed. This is likely due to additional optimizing logic consuming processing cycles on 
already small triangles due to the low screen resolution. The XIP cache also does not 
provide the ability to prefetch instructions, which leads to long waits when new 
instructions cannot be fetched directly from the cache. This is more likely with larger 
amounts of code, thereby causing stalling if logic complexity is too high. Small loops are 
therefore preferable over common desktop optimizations like loop unrolling. 
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7 CHUNK SYSTEM IMPLEMENTATION 
7.1 CHUNK LOADING SYSTEM WITH LEVEL OF DETAIL 

The game world is split into a grid of square cells, each containing a mesh of the 
environment. As the Player moves from one chunk to the next, chunks are loaded 
around the player to ensure the player is always surrounded by visible chunks.  

The chunk sizing and layout was determined through tests and subjective appearance 
of draw distance to yield a suitable compromise in scene complexity and size. 

 
FIGURE 35: LOADING OF CHUNKS IS PERFORMED IN AN ONION LAYER LIKE MANNER 
TO REDUCE OVERDRAW AND POSSIBLE Z-FIGHTING.  

To reduce overdraw, chunks closest to the player are loaded in first, with chunks 
furthest away being loaded in last. This also reduces the chance of Z-fighting in meshes 
which are close to each other. 

Chunks are also stored in two variants. One variant is modelled with a full level of 
detail, and one with a reduced level of detail. This allows meshes far away to be loaded 
in with significantly lower vertex count reducing pressure on the rasterizer and 
increasing performance. 
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FIGURE 36: CHUNK WITH FULL LEVEL OF DETAIL (LEFT) AND REDUCED LEVEL OF 
DETAIL (RIGHT). 

 

7.2 CHUNK CACHE 

While a chunk system with LODs works to reduce vertex load, a significant bottleneck 
is still encountered when loading chunks constantly from flash for each frame. To 
reduce this impact, a chunk cache consisting of a separate triangle list is created. This 
buffers all chunk triangles when the player is not actively moving to a different chunk.  

As each chunk is only 10 meters in size in each direction from object origin, they can be 
stored as 16-bit vertex models. Chunk locations are stored separately and used when 
adding meshes to the triangle list to calculate final world coordinates of each triangle. 

 
FIGURE 37: CHART SHOWING PERFORMANCE IMPROVEMENTS WHEN UTILIZING 
CHUNK CACHE (LOWER IS BETTER). 

The use of a chunk cache significantly benefits both cores, as the XIP cache does not 
need to flush out active instructions or data when existing chunks can instead be loaded 

0 5000 10000 15000 20000 25000

Core 0

Core 1

Chunk cache frame time improvements (rounded to 
nearest 100 microseconds)

Chunk Cache Off Chunk Cache On
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from RAM. This leads to a 27% cut in frame time for core 0 and a 13% cut in frame time 
for core 1. 

Frame jittering when entering a new chunk does exist as the chunk cache has to be 
refilled with updated meshes. This is deemed to be an acceptable tradeoff for the 
increase in performance in all other frames where a user is not entering a different 
chunk. 

 
FIGURE 38: 16-BIT TRIANGLE STRUCT USED TO STORE MESH TRIANGLES IN FLASH, 
THE CHUNK CACHE AND TRIANGLE LISTS. 

A more advanced chunk cache was considered, utilizing the ability to shift chunks and 
only reload new chunks which were not already residing in the cache. This was dropped 
however, as the additional code complexity and the additional required memory to 
handle worst case scenarios outweighed the benefits of a simpler reloading mechanism. 

 

7.3 BLENDER ADD-ON 

As manual entry of vertex points for larger amounts of meshes is impractical an add-on 
for Blender, the open-source 3D modelling application, is created. Written in Python 
and using the Python API and scripting environment found in Blender itself, the add-
on converts meshes automatically into compatible C header files which can then be 
included in the engine.  

The add-on also natively exports chunks into a single large header file containing both 
LOD stages along with light positions for each chunk for dynamic lighting calculations. 
Chunk metadata such as the number of triangles and a pointer to the associated 
triangle list are stored in a large 2D array, with one array for each LOD stage.  

To ease modelling work, chunks can also be optionally repeated and are consequently 
only exported as a single mesh, saving storage. 
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FIGURE 39: CHUNK METADATA IS STORED IN A 2-DIMENSIONAL ARRAY WITH 
POINTERS TO MESHES. THIS STRUCTURE IS REPEATED FOR LOD1. 

 

 
FIGURE 40: BLENDER WITH ADD-ON INTERFACE AND PROTOTYPE GAME WORLD 
DIVIDED IN CHUNKS. 
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7.4 PER-VERTEX DYNAMIC LIGHTING 

Open world games frequently employ changes in daylight to give players a sense of time 
progression. This is achieved with changes in lighting to the scenery and sky box or 
background.  

 
FIGURE 41: DEFAULT STARTING SCENE, ONE VARIANT WITHOUT DYNAMIC 
LIGHTING APPLIED (LEFT), ONE WITH DYNAMIC LIGHTING (RIGHT). 

The use of pre-baked and dynamic lightmaps is a significant consumer of RAM and 
storage, the use of which should be avoided (Abrash, Graphics Programming Black 
Book, 1997). An alternative is to prebake color values on vertices. This reduces the 
ability to dynamically change environmental lights as is the case for example with 
streetlamps only being turned on at night. 

Utilizing the chunk loading system, however, allows lights to be exported along with 
mesh data. This allows lighting to be calculated at runtime to affect color values of 
individual vertex points depending on time of day in-game. 

 
FIGURE 42: VERTEX POINTS CALCULATE DISTANCES TO NEARBY LIGHT SOURCES. 

Vertices look for light  
sources nearby primarily 
within existing chunk. 

If not found, search widens 
to neighboring chunks and 
lights within distance. 
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The disadvantage is lowered performance, as dynamically lighting each vertex point 
consumes resources to calculate distances (skipping square root calculations due to 
performance cost) and comparing them for each light source. This is especially 
problematic if light sources are not close enough or simply do not exist in the current 
chunk the vertex is in. 

 
FIGURE 43: PERFORMANCE COMPARISON OF ENABLED/DISABLED DYNAMIC 
LIGHTING 
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8 PROTOTYPE IMPLEMENTATION 
8.1 MODEL LOADING & TECHNIQUES 

Models which are to be displayed are loaded each frame into the triangle list for 
rendering. Smaller models such as NPCs, objects and foliage are given priority before 
meshes from the chunk system are loaded in. This reduces the chance of objects being 
partially obscured due to low Z-buffer bit depth and lowers overdraw as most objects 
are likely to be close to the player.  

The low bit depth of the Z-buffer also increases the likelihood of Z-fighting, especially 
when in combination with the near-plane clipping code due to the low accuracy of the 
resulting calculated reciprocals. This necessitates careful modelling to ensure large 
surfaces are not too close to each other in parallel or multiple layers of geometry are 
applied to meshes.  

 
FIGURE 44: CLOSE SECONDARY SURFACE ON A BUILDING CLIPPING THROUGH 
(LEFT), CORRECT APPEARANCE ON THE RIGHT. 

A side benefit of ensuring unseen surface removal is increased performance, as surfaces 
which are only present once do not need to be overdrawn. 

Another modelling optimization is to completely remove chunks which are not 
accessible or visible to the player during normal gameplay. Existing chunks can in 
return have an increased polygon count without exceeding the triangle list limit. This 
allows more detail to be presented for example in alleys or inside buildings. 
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FIGURE 45: NOT MODELLING INACCESSIBLE OR NOT VISIBLE CHUNKS REDUCES 
GRAPHICAL WORKLOAD. 

 

8.2 NON-PLAYER CHARACTERS 

Open world games frequently make use of non-player characters (NPCs) and enemies 
to provide the player with entertainment. These characters further need to be animated 
to give them a live-like appearance. However, the use of advanced techniques like 
vertex weighted bones and skeletons are too computationally expensive to be effectively 
done on a microcontroller. (Ars Technica, 2020) 

A viable solution to this problem is the use of linear interpolation between already 
posed meshes to animate characters. The use of linear interpolations usually comes 
with computationally slow integer divisions. This can be resolved by ensuring timings 
in character animations are a power of two to allow the compiler to apply bit shifts 
instead of actual divisions to increase performance.  

Rotation matrices can also be skipped in favor of simpler mathematical negations of 
vertices if characters only need to face in one of the cardinal directions. 
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FIGURE 46: NPC MODELS IN VARIOUS POSES FOR LATER INTERPOLATION BY THE 
ENGINE. 

As the process of blending meshes is expensive to calculate, significant performance 
gains are achieved using view frustum culling. This allows NPCs to be completely 
skipped when not in view of the player. 

In the prototype, a variant of NPCs is produced as enemies to provide gameplay. These 
“zombies” differ in containing additional animation targets as they react to the player 
and their actions. 

 

8.3 FOLIAGE 

Scenery containing larger and simpler objects such as buildings and landscapes can be 
handled using chunks. Foliage (Grass, trees, bushes etc.) is a common graphical 
addition unsuited for this method due to higher graphical requirements. Commonly 
implemented using many impostors drawn close to the player, newer games have 
progressed to using actual geometry for elements like grass blades. (Wohllaib, 2022) 

For the prototype, grass is implemented by feeding the triangle list with a grid of 
individual grass elements. These elements consist of simple pyramids to maintain 
performance, while the top vertex element is moved to simulate wind activity. To 
reduce overdraw and improve performance, as with the chunk system, grass elements 
closest to the player are filled first with further foliage added according to distance. 

To improve performance, dynamic lighting is skipped in areas with foliage and a 
custom vertex shader (modifying vertex colors) is applied to simulate day- and 
nighttime changes. 
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FIGURE 47: FROM LEFT TO RIGHT: GRASS WITH DAYLIGHT LIGHTING, NIGHTTIME 
LIGHTING AND ARRAY OF GRASS AS SEEN FROM ABOVE. 

 

 

8.4 MEMORY CONSUMPTION & PERFORMANCE 

The completed engine and prototype demonstration world come with the following 
memory consumption based on the total available RAM of the main banks (256KB) of 
the RP2040 (not including both 4KB RAM banks dedicated for each core):  

 
FIGURE 48: GRAPH SHOWING MEMORY CONSUMPTION OF MAIN VARIABLES IN 
RAM.  

Performance is measured by implementing a benchmark utilizing the demo mode of 
the prototype game. This measures average frame time and frames rendered along with 
categorizing frames based on frame time.  

Due to the method of implementation of the engine, synchronization of both cores only 
happens at the beginning of the draw() routine. Frame rate is therefore effectively the 
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supported display refresh divided by a whole number, representing the time taken to 
render the frame. As an example, if core 1 can fully render a frame within 25 
milliseconds (i.e., one frame of time), the effective frame rate is 40/1 = 40FPS.  

However, if core 1 requires slightly more time, for example 26 milliseconds, the next 
synchronization only occurs at the next V-Sync another frame later. This produces the 
effect of a 2-frame lag and therefore a frame rate of 40/2 = 20FPS. Further slowdowns 
cause effective drops to 13.3FPS (40/3 or 50-75 milliseconds required core 1 time), 
10FPS etc. 

Running the benchmark utilizing a final prototype version produces the results seen in 
Table 1. 

TABLE 1: BENCHMARK RESULTS 

Condition Value Note 

Frames rendered within 25,000 
microseconds 

3,123 Effectively 40FPS 

Frames rendered within 50,000 
microseconds 

1,964 Effectively 20FPS 

Total frames rendered 5,087 Theoretical maximum of 7000 frames 

Average frame time in 
microseconds 

25,366 Total rendering time divided by total 
frames rendered 

 

Frame rate drops below 20FPS are possible during actual gameplay when the player for 
example looks straight at a wall. This is caused by the software rasterizer being heavily 
fillrate limited, and scenes which fill up the display likely to cause the highest 
performance degradation. 

The engine as configured for the prototype world can output up to 1,500 triangles per 
frame, leading to an effective maximum triangle count of 60,000 triangles per second 
at 40 FPS. This number only factors in visible triangles as culling operations on core 0 
effectively remove non-visible triangles before rasterization takes place. 
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8.5 PROTOTYPE GAME ARCHITECTURE 

Most important functions of the prototype game, including the rendering pipeline, can 
be mapped out in a call graph as shown below in Figure 48. Mesh data is mostly 
retrieved from header files as individual triangles, transformed as needed, and passed 
on for final rendering using the render_triangle() function. 

 

 
FIGURE 49: FUNCTION CALL GRAPH WITH MESH DEPENDENCIES 
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9 CONCLUSION 
The completed prototype successfully runs, proving the viability of an open world 
engine and game on a microcontroller-based handheld. Between 20 and a maximum of 
40 frames per second are achieved to provide a relatively consistent gameplay 
experience depending on graphical workload. Varying environmental models found in 
the prototype also showcase the flexibility of the engine in providing different aspects 
and variants of an open world game.  

The engine itself is also kept relatively simple, allowing other developers to produce 
custom games and modify it according to their needs. Coupled with the Blender add-on 
for exporting meshes and chunks, the engine allows for rapid development of new 
content and rapid reuse of existing components. 

Issues were encountered early on due to a lack of floating-point hardware acceleration, 
however. Fixed-point calculations often contained issues when dealing with overflows 
and reciprocals limiting precision in areas such as the Z-Buffer. While many are 
resolved to an acceptable extent, a few graphical issues and common artifacts persist 
due to these limitations. 

 
FIGURE 50: SCREENSHOTS OF THE FINAL PROTOTYPE GAME. 

Noticeable difficulty was also had in applying more complex algorithms to speed up 
code sections such as the rasterizer. This was caused by the lack of prefetch capability 
of the XIP cache, punishing excessive use of CPU instructions when not run from RAM. 
The implemented rasterizer is therefore straightforward and without additional 
complexity. 

Producing sufficient graphical content for the prototype also consumed a significant 
amount of time. The resulting prototype therefore contains a rather constrained world 
measuring only 12 by 12 chunks in size (120m by 120). 
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9.1 POTENTIAL IMPROVEMENTS 

During and after development, several components of the engine were noted to be 
likely candidates for further improvements in the future. These include: 

• Unifying coordinate systems to be more in line with Blender. This would reduce 
developer confusion when dealing with differing orientations both in the engine 
and when modelling. 

• Improved or additional tooling for components such as NPCs, mesh imports 
and texture support. 

• Modification of rasterizer to perform after Z comparison for partially 
transparent textures. 

• The rasterizer itself does not contain additional rules to handle gaps and holes 
between triangles which should be resolved. 

• Implementation of a dedicated texture cache to prevent stalling the rasterizer 
during a cache miss. 

• Core 1 rasterizer function reprogrammed or optimized to improve performance. 
A scanline converter or coarse-grained binning rasterizer may be of use here. 

• Custom linker file to separate variables into separate ram banks, thereby 
preventing excess collision of cores when accessing memory. (Styger, 2012) 

• Higher resolution or faster rendering using alternating scanline rasterization. 
This potentially requires DMA to transfer completed lines to framebuffer. 

• Exporting all lights which may affect vertices in a single chunk to reduce the 
search space for dynamic lighting. 

• Pre-calculated vertex lighting for vertices affected by fixed scene lighting. 
• Additional world offset to reduce graphical artifacts due to distance from the 

world origin. 
• Procedural generation and placement of chunks, as modelling work is a 

significant use of development time, allowing faster reuse of assets. 
• Changes to the chunk system allowing easier reuse of existing chunks to save 

placement time and save memory. 

Several of these optimizations are likely to be implementable only once a game’s 
requirements are fully known and developed in order to specifically target bottlenecks 
which may hamper performance.  

 

9.2 OUTLOOK 

As microcontrollers become more performant over the next several years, their ability 
to perform more complex 3D rendering tasks is likely to increase. Higher resolutions as 
well as more complex shaders and graphical features are expected to work on cost-
sensitive gaming handhelds which may not have been possible before, potentially 
opening a new market. 

A significant hurdle for this however is still likely to be developer and artist time, both 
expensive even at the scale of a small open world game. The sale of open world games 
on handheld gaming consoles, either as a separate software product or included on a 
dedicated device, may therefore not be financially viable. This is compounded by the 
fact that low-cost and general-purpose smartphones capable of better graphics and 
gameplay already have significant market share. On the other hand, a successful niche 
(for example as merchandise or gaming trinkets) may still be carved out in a market 
already heavily saturated with open world gaming titles and significantly more 
powerful devices. 
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In the end, even though microcontrollers may not have the performance of larger 
desktop and mobile CPUs their ability to perform matching tasks on a smaller scale 
allows their use in future low-cost applications which have not been considered before. 

 

9.3 SOURCE CODE 

The source code of the prototype engine and game (including Blender files, 
documentation and precompiled binaries) have been made publicly available on 
GitHub: https://github.com/bernhardstrobl/Pico3D 
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